MANMOHAN TECHNICAL UNIVERSITY

SCHOOL OF ENGINEERING

MODEL Questions (2081)

ELECTROMAGNETICS (EG551EX)

BEEE (II/II)

FM: 50

PM: 20

MCQ (10×1=10) Attempt All the Questions.

- 1) Which of the following is not a vector quantity?
 - a) Electric Field Intensity b) Potential Gradient c) Potential Field d) Electric Flux Density
- 2) Find the unit vector along PQ if the coordinates of P and Q are (2, -3, -1) and (3,0, 2) respectively.
 - a) $5 \widehat{a_x} 3 \widehat{a_y} + 2 \widehat{a_z}$ b) $\widehat{a_x} 3 \widehat{a_y} 3 \widehat{a_z}$ c) $\widehat{a_x} + 3 \widehat{a_y} + 3 \widehat{a_z}$ d) $0.229 \widehat{a_x} + 0.688 \widehat{a_y} + 0.688 \widehat{a_z}$
- 3) Electric Flux Density (\vec{D}) at a point P at a distance (ρ) due to an infinite line charge with line charge density (ρ_L) is given by:
 - a) $\frac{\rho_L}{2\pi\varepsilon_0\rho} \widehat{a_{\rho}}$ b) $\frac{\rho_L}{2\varepsilon_0\rho} \widehat{a_{\rho}}$ c) $\frac{\rho_L}{2\pi\rho} \widehat{a_{\rho}}$ d) $\frac{\rho_L}{2\rho} \widehat{a_{\rho}}$
- 4) Divergence of Electric Flux Density gives:
 - a) Potential Field b) Total Charge c) Volume Charge Density d) Current Density
- 5) Energy Storage Capacity of a capacitor (C) when applied to a potential difference of V₀ can be expressed as:

a) CV_0 b) CV_0^2 c) $0.5 CV_0^2$ d) $0.5 CV_0$

- 6) The ratio of intensity of magnetization to the magnetization force is known asa) Flux density b)Susceptibility c) Relative permeability d) None
- 7) The Biot-savart's law is a general modification ofa) Kirchoff's lawb) Ampere's lawc) Lenz's lawd)Faraday's law8) Maxwell's first equation in free space isa) $\nabla \times H = D + J$ b) $\nabla \times H = D$ c) $\nabla \times H = 0$ d) $\nabla \times H = J$ 9) The time varying electric field isa) $E = -\nabla V$ b) $E = -\nabla V A$ c) E = $-\nabla V B$ d) $E = -\nabla V D$ 10) Poynting Vector and Wave Power
 - a) Power b)Energy c)Power density d)Energy density

SQ (8×2=16) Attempt any Eight from Nine.

- 1. Find the distance between two points C ($\rho = 5$, $\phi = 75^{\circ}$, z = 2) and D (r = 3, $\theta = 20^{\circ}$, $\phi = 125^{\circ}$).
- 2. Compute the Electric Field Intensity at P (1, 3, -1) due to two identical charges of +4 nC at M₁ (0, -2, 3) and M₂(-2, 1, -1).
- 3. State Gauss's Law and Divergence Theorem.
- 4. Derive the expression for Capacitance of a parallel plate capacitor with Surface Area (S) and separation distance (d).
- 5. Describe polarization and its effect on Electric Flux Density (\vec{D}) on a dielectric material.
- 6. Differentiate between scalar and vecior magnetic potential.
- 7. Explain how Ampere's law conflict with continuity equation and how it is corrected?
- 8. State Faraday's law and correct the equation $\nabla \times \vec{E} = 0$ for time varying field with necessary derivation
- 9. Elaborate the significance of a curl of a vector field.

Sample Question

LQ (6×4=24) Attempt any Six from Seven.

- 10. Derive the expression for the Electric Field Intensity (\vec{E}) due to an infinite sheet of charge with surface charge density (ρ_s) .
- 11. In a free space, Electric Flux Density $\vec{D} = 8xyz^4 \ \widehat{a_x} + 4x^2z^4 \ \widehat{a_y} + 16x^2yz^3 \ \widehat{a_z} \ pC/m^2$.
 - a) Find the total electric flux passing through a rectangular surface represented by z = 2, 0 < x < 2, 1 < y < 3.
 - b) Find \vec{E} at P (2, -1, 3).
- 12. Verify Divergence Theorem for $\vec{D} = 2xy \ \widehat{a_x} + x^2 \ \widehat{a_y} \ c/m^2$ and a rectangular parallelopiped formed between the planes $x = 0 \ \& \ x = 1, y = 0 \ \& \ y = 2, z = 0 \ \& \ z = 3$.
- 13. Derive the expressions for the Boundary Conditions of Electric Fields on the boundary between a conductor and a free space.
- 14. Derive an expression for input intrinsic impendence using the concept of reflection of waveform plane wave
- 15. Write all the Maxwell equations for the time varying field point form as well as integral form
- 16. A rectangular waveguide has dimension a=4 cm and b=2 cm. Determine the cut off frequency and range of frequencies over the guide will operate single mode.

ALL THE BEST